
Java Data Objects (JDO)

Paul McKinney
EDS / Sun Microsystems

Java Data Objects (JDO)

● Overview
● Interfaces and helper class
– PersistenceManager
– PersistenceMangerFactory
– Transaction
– Extent
– Query
– JDOHelper

Java Data Objects (JDO)
● Datastore Mapping

● Configuration - Setup

● Class Enhancement

● Transactions

● Queries

● Identity

● Lifecycle states

Java Data Objects (JDO)

● JDO 1.0.1 Opinion

● JDO 2.0 Features

● Un-architected JDO Demo

● Spring
– IoC – Dependency Injection

– Quick framework overview

● Architected JDO Example

Overview

● JDO is a specification that describes a
way to persist objects in a datastore
independent way.

● Java developers are allowed to create
their domain model in a fully object
oriented (composition, inheritance)
way and JDO provides a way to persist
that domain model.

Overview - Architecture

Interfaces
● PersistenceManager
– Primary interface when using JDO

– Used to create query and transaction objects.

– Manages the lifecycle of persistent instances.

● PersistenceManagerFactory
– Creates and configures PersistenceManager.

– Helps create JDO runtime environment

Interfaces and Helper Class

● JDOHelper
– Provides static utilty methods.

– Creates PersistentManagerFactory

● Transaction
– Provides methods to manages the demarcation

of transactions

● Extent
– Used to access all instances of a class

Intefaces

● Query
– Evaluates a filter expression when querying for

persistent instances.

Domain Model – Survey System

Datastore Mapping
<jdo>

 <package name="survey.domain">

 <class name="User"
 identity-type="application"
 objectid-class="survey.domain.keys.UserKey">

 <field name="id" persistence-modifier="persistent"
primary-key="true">

 <extension vendor-name="jpox" key="length" value="max 40"/>
 </field>

 <field name="firstName" persistence-modifier="persistent">
 <extension vendor-name="jpox" key="length" value="max 20"/>
 </field>

 <field name="lastName" persistence-modifier="persistent">
 <extension vendor-name="jpox" key="length" value="max 40"/>
 </field>

.

.

.

Datastore Mapping

<class name="Administrator"
 objectid-class="survey.domain.keys.AdministratorKey"
 persistence-capable-superclass="survey.domain.User">

 <field name="surveys">
 <collection element-type="Survey"/>
 </field>

 <field name="respondents">
 <collection element-type="Respondent"/>
 </field>

</class>

.

.

.

Datastore Mapping

<class name="Survey" identity-type="datastore">

 <field name="title" persistence-modifier="persistent">
 <extension vendor-name="jpox" key="length" value="max 40"/>
 </field>

 <field name="description" persistence-modifier="persistent">
 <extension vendor-name="jpox" key="length" value="max 200"/>
 </field>

 <field name="questions" persistence-modifier="persistent">
 <collection element-type="Question"/>
 </field>

</class>

.

.

.

Configuration - Setup

Properties properties = new Properties();

// Set the PersistenceManagerFactoryClass.
properties.setProperty(
 "javax.jdo.PersistenceManagerFactoryClass",
 "org.jpox.PersistenceManagerFactoryImpl");
properties.setProperty(
 "javax.jdo.option.ConnectionDriverName",
 "com.mysql.jdbc.Driver");
properties.setProperty(
 "javax.jdo.option.ConnectionURL",
 "jdbc:mysql://localhost/demo1");
properties.setProperty("javax.jdo.option.ConnectionUserName", "root");
properties.setProperty("javax.jdo.option.ConnectionPassword", "");
properties.setProperty("org.jpox.autoCreateTables", "true");
properties.setProperty("org.jpox.validateTables", "false");
properties.setProperty("org.jpox.validateConstraints", "false");

pmf = JDOHelper.getPersistenceManagerFactory(properties);
pm = pmf.getPersistenceManager();

Class Enhancement
● Classes to be persisted are required to

implement the PersistenceCabable
interface. The interface defines a set
of methods that the JDO
implementation uses to manage
instances.

● Enhancement can be done manually or
by a source or byte code enhancer.

● Adds code to mediate access to fields.

Queries

● Performed using the Query interface

● JDO Query Language (JDOQL) used to
access persistent instances based on
specified search criteria.

– provides language neutrality

– allows implementation to provide datastore-
specific query optimizations

Queries - Code

 // load Administrator
 try {
 tx.begin();

 Extent extent = pm.getExtent(Administrator.class, false);
 String filter = "id == parmId";
 Query query = pm.newQuery(extent, filter);
 query.declareParameters("String parmId");
 query.declareImports("import java.lang.String;");
 Collection result = (Collection) query.execute("pm143527");

 Iterator iter = result.iterator();
 while (iter.hasNext()) {
 admin = (Administrator) iter.next();
 }

Transactions

● Access and updates are performed in
the context of a transaction.

● One-to-one relationship between a
PersistentManager and a Transaction.

● begin() to begin a transaction; commit
() or rollback() to end a transaction

Identity

● Datastore identity
– identity managed managed by JDO or the

datastore

● Application identity
– identity is managed by the application
– composed of one or more primary-key-fields
– must define an application identity class with

fields that match the primary-key-fields

Lifecycle State Diagram
-VERY Simplified

Lifecycle States
● Transient
– normal non-persistent object
– how a persistent object starts it life

● Persistent
– instance made persistent when makePersistent

() is called
– has an associated object identity

● Hollow
– a persistent instance whose fields have not been

retrieved from the datastore

Un-Architected Demo

JDO 1.0.1 - Opinion

● Less mature than Hibernate

● Would not use an open-source solution
of JDO at this time.

● JDOQL lacks aggregate functions (min,
max, count)

● PIA to perform updates of domain
objects in a web application.

JDO 2.0 – New Features
● Addresses shortcomings in JDO 1.0.1

● Will have attach/detach capability.

● JDOQL will include aggregates and will
have named queries.

● Will include an “official” escape hatch
for running SQL if need be.

● Standardized O/R mappings.

Spring Framework

● A lightweight J2EE framework
container utilizing inversion of control.

● At it's core, utilizes “bean factories” to
wire together and manage
relationships between objects.
– singleton
– prototype

● Promotes the use of well defined
layers.

Spring Framework - Continued

Persistence Layer Demo
Survey System

● Built using a service and a DAO layer.

● The application layer, or JUnit tests in
this case, talk to the service layer and
the service layer talks to the DAO layer.

● The service layer is used to coordinate
transactions.

Survey System Persistence Layer

Architected Demo

Application

Persistent Service

DAO

JUnit

JUnit

Suggested Development
Approach
● Using use cases, design domain model.
● Determine what datastore actions have

to be performed to fulfill use cases.
● Build persistent/DAO layers ensuring all

use cases are met using JUnit to verify
correctness and completeness.

● After persistent layer is complete then
lay on a thin UI layer.

Questions

Resources

JPOX – open-source JDO implementation

Spring – open-source IoC container

JDO Central – JDO news, information, and
community

JSR 12 – JDO 1.0.1 Specification

JSR 243 - JDO 2.0 JCP

Java Data Objects (JDO)

paul.mckinney@sun.com

